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Critical exponents for the three-dimensional O(n)-symmetric model with n > 3 are estimated on
the basis of six-loop renormalization-group (RG) expansions. A simple Padé-Borel technique is used
for the resummation of the RG series and the Padé approximants [L/1] are shown to give rather
good numerical results for all calculated quantities. For large n, the fixed point location g. and
the critical exponents are also determined directly from six-loop expansions without addressing the
resummation procedure. An analysis of the numbers obtained shows that resummation becomes
unnecessary when n exceeds 28 provided an accuracy of about 0.01 is adopted as satisfactory for g.
and the critical exponents. Further, results of the calculations performed are used to estimate the
numerical accuracy of the ;1‘— expansion. The same value n = 28 is shown to play the role of the lower
boundary of the domain where this approximation provides high-precision estimates for the critical

exponents.

PACS number(s): 64.60.Ak, 64.60.Fr, 11.10.Lm, 11.15.Pg

I. INTRODUCTION

The field-theoretical three-dimensional O(n)-sym-
metric model with self-interaction of Ap* type is known
to describe the critical behavior of many basic physical
systems such as Ising (n = 1) and Heisenberg (n = 3)
ferromagnets, superfluid Bose liquids (n = 2), polymers
(n = 0), etc. Nickel, Meiron, and Baker, Jr. calcu-
lated all two-point and four-point Feynman graphs for
this model up to a six-loop order [1], paving the way
for obtaining perturbative expansions of unprecedented
length for B function and critical exponents. These ex-
pansions were then explicitly found and used, being re-
summed in various manners, to estimate the stable fixed
point coordinate and numerical values of critical expo-
nents [2—4]. The values obtained are referred to today as
the most accurate (canonical) numbers [5].

Explicit expressions for the renormalization-group
(RG) functions and numerical estimates were presented
in Refs. [2—4] only for n = 0,1, 2, 3. At the same time, it
is desirable to have such results for n > 3. They are in-
teresting from, at least, three points of view. First, there
are numerous physical systems with many-component
order parameters and these results may be relevant to
their critical or effective critical behavior (see, e.g., Refs.
[6-8]). Second, such calculations would enable one to
clear up where resummation procedures applied to the
RG series become unnecessary, i.e., how large are the
values of n for which the theory may be thought of as
possessing a small parameter. And third, high-precision
numerical estimates of critical exponents for n > 1, when
compared with their counterparts given by % expansion,
would provide information about the numerical accuracy
of this familiar approximation scheme.

Below, the six-loop perturbative expansions for 3 func-
tion and critical exponents 1 and v (y~!) are calculated
for arbitrary n. The fixed point coordinate g. and crit-
ical exponents are estimated on the base of Padé-Borel
resummation procedure and a comparison of these num-
bers with those given by the unresummed RG series and
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a % expansion is made. The outline of the paper is as fol-

lows. In Sec. II the renormalization scheme is formulated,
RG expansions are written down, the resummation tech-
nique is described, and numerical results obtained are
collected. In Sec. III, they are discussed along with their
analogs resulting from unresummed six-loop series and a
% expansion, and corresponding inferences are presented.
Section IV contains conclusions.

II. RENORMALIZATION-GROUP SERIES
AND NUMERICAL RESULTS

The Hamiltonian of the model to be studied reads

H=j [@[(Venr +miei+ 22027 . @)
where ¢, is a vector order parameter field, a = 1,...,n,
a bare mass squared, m2 is proportional to the deviation
from the mean-field transition point.

We calculate the ([ function and critical exponents
within a massive theory. The renormalized Green
function Ggr(p,m,g) and a four-point vertex function
T'r(p,m,g) are normalized at zero momenta in a con-
ventional way:

GEI(O,m,g) =m?
-1
aC;'R (p;mag) =1 , (22)
Op p?=0

FR(Oamsg) =mg ,
with one extra condition imposed on the (2 insertion:

F}z’z(p, q,m,g) ‘ =1 (2.3)
p=q=0

Since combinatorial factors and momentum integrals for
two-point and four-point Feynman graphs are known [1],
the calculation of the 8 function and critical exponents
(anomalous dimensions) within a six-loop approximation
is straightforward (see, e.g., [9]). The results are as fol-
lows:
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These series are known to be divergent (asymptotic).
To extract the physical information which they contain,
some resummation procedure should be employed. We
use the Padé-Borel method, i.e., construct Padé approx-
imants [L/M] for Borel transforms which are related to
functions to be found (“sum of series”) by the formula

oo

f(z) = chzk = /°° e 'F(zt)dt , (2.7)
k=0 0

Fly) =Y 2v* (2.8)
k=0

and then evaluate the integral (2.7), where series (2.8)
possessing nonzero radii of convergence are replaced by
corresponding Padé approximants.

Starting from the six-loop expansions available, it is

(—0.025 926 794 5n° — 1.618 627 843n* + 85.545 697 46n°

(2.6)

[

possible to construct different sets of Padé approximants:
[L/1], [L—1/2], etc., where L = 6 for B function and L =
5 for critical exponents. As we have found, approximants

L
[L/1] = (1 +b1y)™" > airf, (2.9)

=0

which generate the following expressions for sums of the
series:

L
f(z) = ze *Ei(z) Zai(-—bl)_i

=0

L i—1
=3 ai(—b) Y klzTH,
i=1 k=0

2= -, Ei(z):/z

ty—1
e‘t™ dt
bla: —oo ’

(2.10)
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TABLE I. The stable fixed point location and the critical
exponents obtained within the six-loop approximation using
the Padé-Borel resummation technique.

9ge Y ] v a B
0 1.402 1.160  0.034  0.589 0.231  0.305
1.421*> 1.161° 0.026>  0.588 0.236  0.302
1.417° 1.162°> 0.026® 0.588 0.302°
1 1.401 1.239  0.038  0.631 0.107  0.327
1.416* 1.241®> 0.031* 0.630° 0.110*  0.324°
1.414°> 1.240° 0.032°> 0.630° 0.325°
0.035°  0.628°
2 1.394 1.315 0.039 0.670 - 0.010 0.348
1.406* 1.316® 0.032* 0.669> -0.007>  0.346
1.405° 1.316° 0.034®>  0.669° 0.346°
0.0374°  0.665°
3  1.383 1.38  0.038 0.706 - 0.117 0.366
1.392* 1.390®° 0.031* 0.705> - 0.115* 0.362°
1.391®  1.387°  0.034®> 0.705° 0.365°
0.037°  0.698°
4 1369 1.449  0.036 0.738  -0.213  0.382
5 1.353 1.506  0.034  0.766 - 0.297 0.396
6 1.336 1.556  0.031 0.790 - 0.370  0.407
7 1319 1.599  0.029 0.811  -0.434 0.417
8 1.303 1.637  0.027 0.830 - 0.489 0.426
9 1.288 1.669  0.025 0.845 -0.536 0.433
10  1.274 1.697  0.024  0.859 -0.576 0.440
12 1.248  1.743  0.021 0.881 - 0.643  0.450
14 1.226 1.779  0.019  0.898 -0.693 0.457
16 1.207 1.807  0.017 0911 -0.732 0.463
18 1.191  1.829  0.015 0.921 -0.764 0.468
20 1.177  1.847  0.014 0.930 -0.789  0.471
24 1154 1.874  0.012 0.942 - 0.827  0.477
28 1.136 1.893  0.010  0.951 -0.854 0.481
32 1.122 1.908  0.009 0.958 - 0.875 0.483

#Quoted from Ref. [3]
PQuoted from Ref. [2].
°Quoted from Ref. [10].
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give the best results. They are presented in Table I. The
estimates for v and 7 originate from series (2.5) and (2.6),
while numerical values of critical exponents v, a, and 3
were determined by means of well-known scaling rela-
tions. The exponent vy was calculated also via resummed
RG expansion for the exponent 7, = (1—+v)(2—7)/v and
numbers were obtained which differ from those resulting
from (2.6) by no more than 0.003; corresponding averages
stand in Table I. This table contains as well, for com-
parison, numerical results found earlier for n = 0,1,2,3
on the base of higher-order RG expansions in 3 and 4 —¢
dimensions using alternative resummation techniques [2,
3,10]. It is worth discussing these results along with ours
in more detail.

As we can see, there are small differences between our
estimates and their counterparts obtained in Refs. [2, 3]
from the three-dimensional RG expansions of the same
length. They are caused by use of different resummation
procedures. Indeed, the authors of Refs. [2, 3] employed
the Borel-Leroy transformation,

oo
f(z) = / tBet F(at)dt, (2.11)
0
instead of Eq. (2.7) in their calculations. The parameter
B was chosen to meet the known large-order behavior of
coeflicients ¢ in perturbative expansions [11, 12]:

ck ~ k!(—a)*k® | k— oo , (2.12)

where a = 0.147 774 for the model (2.1) and b is equal
to2+ %,0r 3+ %, or 54 % depending on the RG func-
tion expanded. We use a much simpler method which
ignores some part of information (2.12) but leads, never-
theless, to numerical results rather close to those given
by more sophisticated techniques. It is not surprising
since the main property of ¢, — their factorial growth,
is taken into account in our analysis, while the rest of
information about ¢ being incorporated enables one to
reduce the apparent errors of estimation keeping the loca-
tion of the fixed point and critical exponents practically
unchanged (see, e.g., Ref. [3] for detail). Dealing with
simple Padé approximants [L/1], we avoid also, to a cer-
tain extent, the problem of poles. The point is that these
approximants turn out to have no real and positive poles
for n < 38 in the case of critical exponents and up to
n = 80 for the 8 function. That is why Table I ends at
n = 32. Since for n = 0,1,2,3 our procedure gives crit-
ical exponents values which are almost identical to the
known high-precision estimates [2, 3, 10], we believe that

TABLE II. Coordinates of the fixed point obtained from Eq. (2.4) with use of the Padé-Borel
resummation procedure (PB) and by direct summation (DS).
n 20 24 28 32 36 40 50 60
ge (DS) 1.2184 1.1725 1.1458 1.1273 1.1134 1.1025 1.0830 1.0699
(PB) 1.1768 1.1538 1.1359 1.1216 1.1099 1.1003 1.0822 1.0696
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TABLE III. Values of the critical exponent <y obtained by the direct summation of the RG
expansion (DS), by means of Padé-Borel-resummation technique (PB) and from the —11; expansion
[Eq. (3.1)].

n 20 24 28 32 36 40 50 70 100 500
(DS) 1.8990 1.8991 1.9075 1.9165 1.9245 1.9314 1.9447 1.9606 1.9725 1.9946
(PB) 1.8466 1.8737 1.8932 1.9078 1.9222

% 1.8702 1.8930 1.9090 1.9208 1.9299 1.9372 1.9501 1.9646 1.9754 1.9951

the rest of the results listed in this table are also very
close to exact numbers.

III. LARGE n AND i EXPANSION

How can we estimate g. and critical exponents for n 2
307 It is well known [and clearly seen from Eqs. (2.4)-
(2.6)] that coefficients of RG expansions are decreasing
when n grows up. Hence, for large enough n the theory
should possess a true small parameter as, say, the quan-
tum electrodynamics does. In such a case, all quanti-
ties of interest can be obtained directly from correspond-
ing perturbative expansions, without addressing the re-
summation technique. To find the minimal value of n
which may be referred to as “large enough” we have cal-
culated g. for 20 < n < 60 using original and Padé-
Borel-resummed series (2.4). (It should be remembered
that the approximant [6/1] for the Borel transform of 8
function has no dangerous poles within this segment.)
The results are presented in Table II. Values of g. given
by these two approximations are seen to differ from each
other by 0.9% for n = 28 and this difference diminishes
rapidly with increasing n. So, if the accuracy of order of
1% for g. was adopted as satisfactory, the resummation
of the six-loop expansion for the 8 function becomes un-
necessary when n exceeds 28. The same turns out to be
truth for the critical exponent « as is seen from Table ITI
(the first and the second lines).

For large n, another approximate method may be used

to calculate critical exponents. We mean the famous %

expansion. Within the second order in ;1; exponents -y

and 7 are known to be [13]

241 64,44 1
_g_ 241 6444 5\ 1 3.1
v=2 mn 7w ( 9 4 )n2 ’ (3.1)
8 1 512 1
n (3.2)

T 372n  27mtn?
The series for other critical exponents are easily obtained
via scaling relations.

It is interesting to evaluate the accuracy of numerical
results given by % expansion. We can get such informa-
tion comparing numbers resulting from Egs. (3.1) and
(3.2) for various n with their counterparts obtained on
the base of the resummed (n < 32) and the unresummed
(n > 32) six-loop RG series. On the other hand, this
comparison would help us to determine the accuracy of
the employed approximation itself in the limit n — oo,
where %-expansion’s results are exact.

Corresponding estimates for exponent « are listed in
Table III. These numbers show that numerical accuracy

of Eq. (3.1) becomes better than 1% when n exceeds 28.
Values of 7 given by the six-loop RG series and Eq. (3.2)
are very small and not presented here. They differ from
each other by approximately 10% for n > 28. Moreover,
this discrepancy persists up to largest values of n studied.
It is not a surprise. The point is that, for extremely large
n, only leading terms in n contribute to n in each order
in g. Since g. = 1+ O(n™1!), g. should be put equal
to unity within this limit. Hence, corresponding total
contribution in the case of the six-loop RG series may
be found by summing the coefficients of all leading terms
in Eq. (2.5). Such a procedure gives n = 230458 ' hjle
the exact asymptotic expression resulting from Eq. (3.2)
isnp= Lzzlﬂg. So, the approximate asymptotic estimate
for n differs from the exact one by 13%. This difference,
however, practically does not influence numerical values
of other critical exponents calculable by scaling relations
since for n > 28, the exponent n < 0.01.

We see that simple formulas (3.1) and (3.2) enable one
to estimate all critical exponents for the model (2.1) with
an accuracy of order of 0.01 provided n > 28. Moreover,
for such n second-order terms in these formulas may be,
in fact, neglected since their contributions are very small.

IV. CONCLUSION

Critical exponents of the three-dimensional O(n)-
symmetric model have been estimated from the six-loop
RG series for n > 3. Renormalization-group expansions
have been resummed by means of a simple Padé-Borel
technique and approximants [6/1] (8 function) and [5/1]
(critical exponents) have been shown to provide rather
good numerical results for all calculated quantities. It has
been found that for n > 28, the theory may be thought
as possessing a small parameter, i.e., the fixed point co-
ordinate and critical exponents may be determined with
errors about 0.01 or less directly from the higher-order
RG series, without use of a resummation procedure. Nu-
merical accuracy of the % expansion has been also es-
timated. The same value, n = 28, has been shown to
play a role of a lower boundary of the region where this
approximation provides high-precision results for critical
exponents.
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